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Abstract
We discuss the energy level splitting �ε due to quantum tunnelling between
congruent tori in phase space. In analytic cases, it is well known that �ε
decays faster than the power of h̄ in the semiclassical limit. This is not true in
non-smooth cases, specifically, when the tori are connected by a line on which
the Hamiltonian is not smooth. Under the assumption that the non-smoothness
depends only upon the x- orp-coordinates, the leading term in the semiclassical
expansion of �ε is derived, which shows that �ε decays as h̄k+1 when h̄ → 0
with k being the order of non-smoothness.

PACS numbers: 03.65.Sq, 03.65.Xp, 05.45.-a

1. Introduction

This paper is concerned with the splitting of classically degenerate energy levels. The near
degeneracy (ND) classically corresponds to congruent tori in phase space while the quantum
tunnelling between the tori causes the splitting1. A well known example occurs in the one-
dimensional symmetric double-well potential, where the eigenenergies below the top of the
barrier cluster into two-fold NDs where the energy difference vanishes as

�ε ∼ h̄αe−S/h̄ (1.1)

when h̄ → 0. When turning to multi-dimensional cases, Wilkinson showed that �ε vanishes
normally in the same or, in certain situations, an even more singular manner than (1.1) [2].
However, is it always true that the energy level splitting resulting from quantum tunnelling is
smaller than any power of h̄ in the semiclassical limit? Let us see the following example.

Consider the system on a one-dimensional circle defined by any of the four Hamiltonians,

H1 = p2

2
+ cos2 x H2 = p2

2
+ | cos x|

H3 = |p| + cos2 x H4 = |p| + | cos x|.
(1.2)

1 In this paper, the word ‘tunnelling’ refers to the quantum transition between states that classically correspond to
separate tori in phase space [1].
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In classical mechanics, the above Hamiltonians determine similar phase space portraits,
particularly the motion at H �= 1 contains two symmetric closed orbits: the two vibrational
orbits with H < 1 are connected by the transition (x, p) → (x + π, p) and the two rotational
orbits with H > 1 are connected by the time reversal (x, p) → (x,−p). According to the
Einstein–Brillouion–Keller (EBK) semiclassical quantization rule, this classical degeneracy
implies a two-fold ND structure in the spectrum of H . We can verify this prediction by
directly diagonalizing the Hamiltonians. In figure 1, �ε is plotted as a function of the mean
energy of the ND pair (ε). As expected, �ε (open dots) is much smaller than the spacing of ε
(approximately the dotted lines). However, in contrast with the exponential decay of �ε with
the increase of |ε − 1| in figure 1(a), non-exponential decay of �ε in some cases is obvious.
From the four illustrations, we can see that the ‘exceptional’ ND occurs when and only when
the corresponding classically degenerate tori (closed orbits) in phase space are connected by
line(s) where the Hamiltonian is not smooth. This fact suggests that tunnelling between the
degenerate tori can be greatly enhanced by the passage of non-smoothness.

In fact, Berry showed this non-smoothness-enhanced quantum transition between
classically degenerate states about two decades ago [3]. In studying the coefficient r for
reflection above a barrier V (x) in the semiclassical limit, Berry proved that r ∼ h̄k when V (x)
has a discontinuous kth derivatives, in contrast to the analytic case where r is exponentially
small. Another interesting quantum manifestation of non-smoothness, the power-law
localization of eigenstates, has also been discussed in more recent papers (e.g. [5–7]).

In this paper we shall investigate the energy level splitting resulting from the non-
smoothness-enhanced tunnelling. We first consider the case where ND is related to the
time reversal symmetry. Using a perturbation method, a relation between �ε and the non-
smoothness of the potential is derived. Based on a geometrical interpretation, this relation is
applied to a class of non-smooth systems.

2. Power-law energy splitting

In this section we study systems where ND is related to the time reversal symmetry. The
problem is more tractable since the projection of torus onto the coordinate space contains
no singularity (caustic). By the perturbation method, we obtain an explicit power-law
h̄-dependence of the energy splitting.

Consider a mechanical system on a one-dimensional circle with Hamiltonian H =
Ek(p)+V (x), V (x + 2π) = V (x). The kinetic energy Ek(p) satisfies Ek(−p) = Ek(p), and,
for simplicity, we assumeEk(0) = 0, Ek(∞) = ∞ and d

dpEk(p) > 0 when p > 0. A familiar

example of such kinetic energy is 1
2p

2. Due to the time reversal symmetry, the two classical
orbits at H(x, p) = E > maxx V (x), O+

E and O−
E , one with p > 0 and the other with p < 0,

yield an identical action integral, i.e.∮
O+
E

p dx =
∮
O−
E

p dx = S(E). (2.1)

Consequently, the EBK quantization condition S(E) = 2nπh̄ predicts a two-fold degenerate
level E = εn. The two semiclassical eigenfunctions are given by

�±
n (x) = 1√

Tnẋn
exp[±isn(x)/h̄] (2.2)

where sn(x) = ∫ x

0 pn(x
′) dx ′, pn(x) > 0 is determined by Ek(p) + V (x) = εn, ẋn =

d
dpEk(p)|p=pn(x) is the classical velocity and the normalization constant Tn = ∫ 2π

0
dx
ẋn

is the
period of the corresponding classical orbit [4]. (The suffix ‘n’ of ε, �, p, ẋ, T and s will be
hereafter dropped for simplicity.)
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Figure 1. Splitting of nearly degenerate energy levels. (a)–(d) For H = H1, H2, H3 and H4,
respectively. The numerical result of �ε (open circles), the spacing of semiclassical levels (dotted
curves) and the semiclassical approximation of �ε (solid curves) are shown at h̄ = 0.02. The
insets show the degenerate tori (solid curve) in phase space where H is not smooth on the dotted
curves.

Of course, in general, the two levels do not exactly coincide. The difference between ε

and the exact eigenenergy is of order o(h̄) in the semiclassical limit (h̄ → 0, n → ∞ while
nh̄ is fixed). In the case that V (x) is not smooth (infinitely differentiable), we have seen in the
last section (H2 and H4) that the splitting of energy levels (�ε) is not exponentially small. It
is therefore possible that a non-vanishing �ε will emerge from the higher-order semiclassical
corrections. If we are only interested in the leading term in�ε, however, variational calculation
in the space spanned by �+ and �− will give the result. We shall consider the simple case
that V (x) is a Ck−1 function and∧k

x
V (x) ≡ lim

x ′→x+0

dk

dxk
V (x ′)− lim

x ′→x−0

dk

dxk
V (x ′) (2.3)

is well defined, which vanishes on [0, 2π ] except at discrete points x∗
j , j = 1, . . . , N < ∞.

Then elementary calculations show that the energy splitting is given by (see the appendix)

�ε = h̄k+1

2kT

∣∣∣∣
N∑
j=1

exp(2is(x∗
j )/h̄)

pk+1 d
dpEk|p=p(x∗

j )

∧k

x
V (x∗

j )

∣∣∣∣ + o(h̄k+1) ≡ �ε(0) + o(h̄k+1). (2.4)
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Define a dimensionless measurement of ND by ηn = 2�εn/(εn+1 − εn−1). Noticing that the
semiclassical level spacing is 2πh̄ dE

dS = 2πh̄/T and according to equation (2.4), we find

η = h̄k

2k+1π

∣∣∣∣
N∑
j=1

exp(2is(x∗
j )/h̄)

pk+1 d
dpEk|p=p(x∗

j )

∧k

x
V (x∗

j )

∣∣∣∣ + o(h̄k) ≡ η(0) + o(h̄k). (2.5)

Example 2.1.
H = 1

2p
2 + V (k)(x), where V (1)(x) = max{cos x, 0} and V (k)(x) = [V (1)(x)]k , k = 2, 3, . . . .

According to equation (2.5), when ε > 1,

η(0) = k! h̄k

2kπ(2ε)
k
2 +1

∣∣∣∣∣sin

[
(2ε)

1
2π

h̄
+
kπ

2

]∣∣∣∣∣ .
The comparison of η and η(0) is shown in figure 2.

Example 2.2.
H = |p| + V (k)(x).
When ε > 1, the semiclassical level is given by εn = nh̄ + αk and according to equation (2.4)

�ε(0) = k!h̄k+1

2kπεk+1

∣∣∣∣sin

(
αkπ

h̄
+
kπ

2

)∣∣∣∣
where

αk ≡ 1

2π

∫ π
2

− π
2

cosk x dx = �
(
k+1

2

)
2�

(
1
2

)
�

(
k
2 + 1

) .
The comparison of �ε and �ε(0) is shown in figure 3.

3. Sum over transition paths

In this section we first give equation (2.4) a geometrical interpretation. We find the quantum
transition between the semiclassical eigenstates can be classically described by the leaking of
phase space points from one torus to the other via passage of non-smoothness. This picture
will facilitate the generalization of equation (2.4).

The splitting of nearly degenerate energy levels is closely related to the transition
probability between the corresponding semiclassical eigenstates. In the classical picture,
�+ describes a particle moving on a circle with p > 0. After one classical period, due to
quantum tunnelling, the particle has a non-zero probability to jump to the reflection wave
�− with p < 0. Write exp(HT

ih̄ )|�+〉 = c|�+〉 + A|�−〉. Simple calculations show that
A ≈ T

h̄
〈�−|(H − ε)|�+〉 and �ε ≈ 2h̄

T
|A|. According to equation (A.17), the leading term

in A is the sum of contributions from each non-smooth point of V (x), i.e.

A ≈ A(0) =
N∑
j=1

rj exp(iφj ) (3.1)

with

rj = (ih̄)k

(2p∗
j )

k+1ẋ∗
j

∧k

x
V (x∗

j ) and φj = 2s(x∗
j )/h̄ (3.2)
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Figure 2. Scaled energy splitting η (open circles) and η(0) (connected solid dots) in example 2.1
at k = 1–4 and h̄ = 0.05.

Figure 3. Energy splitting �ε (open circles) and �ε(0) (solid curves) in example 2.2 at k = 1–4
and h̄ = 0.04.

where p∗
j ≡ p(x∗

j ) and ẋ∗
j ≡ d

dpEk|p=p(x∗
j )

. We note that rj is exactly the reflection coefficient

obtained by Berry2.
As the classical representation of �+ and �−, the tori O+

ε and O−
ε are connected by the

straight line x = x∗
j whereH is not smooth. We shall call the vector on x = x∗

j that starts from
O+
ε and ends atO−

ε a transition path and denote it by γj (figure 4). Accordingly, we can say that
�+ → �− is dominated by the tunnelling along the transition path(s). In fact, the reflection
coefficient rj is determined by the local properties of γj . Besides a constant, rj consists of three
ingredients.

∧k
xV (x

∗
j ) can be regarded as the intensity of non-smoothness at γj . 1/(2p∗

j )
k+1

2 Berry’s calculation was based on Ek = p2

2 . However, the result (equation (27) in [3]) is essentially identical to
equation (3.2).
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Figure 4. A schematic figure showing the transition paths γ1 (A → A′), γ2 (B → B ′) and closed
path γ21 (B → B ′ → A′ → A′ → B ′). The EBK quantization rule guarantees that φ2 − φ1(mod
2π ) is independent on the choice of real paths B ′ → A′ on O−

ε and A → B on O+
ε .

describes a power-law decay with the increase of path length 2p∗
j = h̄

∂φj
∂x∗

j

· 1
ẋ∗
j

, which comes

from the product of amplitude of semiclassical wavefunctions, gives a classical weight of the
transition path: the longer the particle stays in the vicinity of the non-smooth point, the more
probable is its jump to the other torus. In contrast to rj , the phase φj is not determined by the
local properties of γj . Since only the relative phase is of physical importance, i.e. gives rise
to interference effect, we find

φj − φk = 2

h̄
(s(x∗

j )− s(x∗
k )) = 1

h̄

∮
γjk

p dx (3.3)

where γjk is a closed path consisting of γj , −γk (γk with opposite direction) and the segments
of O+

ε and O−
ε (real paths) that attached at their ends (see figure 4). If γjk is contractible,

φj − φk is simply the phase space area (in the unit of h̄) enclosed by this closed path.
Behind the simple form of equation (3.2) there are two non-generic facts resulting from

the assumption that d
dpEk(p) > 0 when p > 0: the starting and end points of γj are symmetric

with respect to p = 0 and the projection of O+
ε or O−

ε onto the coordinate space contains no
singularity. Now we ignore this assumption and require only Ek(−p) = Ek(p) to guarantee
the time reversal symmetry. Let Aj = (x∗

j , pj ) ∈ O+
ε and A′

j = (x∗
j , p

′
j ) ∈ O−

ε be the starting
and end points of γj . By adopting the general semiclassical eigenfunctions corresponding to
the tori O+

ε and O−
ε [4], similar calculations as those performed in the appendix show that

equations (3.2), (3.3) should be modified as

rj = (ih̄)k

(pj − p′
j )
k+1

√
|ẋ(Aj )ẋ(A

′
j )|

∧k

x
V (x∗

j ) (3.4)

and

φj − φk = 1

h̄

∮
γjk

p dx −Mjkπ/2 (3.5)

where Mjk is the sum of the Maslov indices of the segments of real paths on γjk . Having the
contribution of each transition path, we need only to sum over all these paths to obtain the
energy splitting �ε(0) or η(0).

Example 3.1.
H = (p2 − 1)2 + V (x), where V (x) = 1 − ( x

π
)2, |x| � π .
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Figure 5. η (open circles) and η(0) (solid curves) in example 3.1 at h̄ = 0.02. The inset shows
three types of tori in phase space. The tori encircling point (0, 0) produce a semiclassically non-
degenerate component of the energy spectrum at 1 < ε � 2, which has been excluded according
to semiclassical criterion that the expectation value of p2 at the corresponding eigenstates is less
than unity.

When ε < 1, the Maslov index ofO+
ε (orO−

ε ), which encircles point (π, 1) (or (π,−1)), is 2 and
EBK quantization condition reads S(εn) = 2(n+ 1

2 )πh̄ (see the inset of figure 5). The straight

line x = π intersectsO+
ε (orO−

ε ) at pointsA1,2 (orA′
1,2) wherep = (1±ε

1
2 )

1
2 (or −(1±ε

1
2 )

1
2 ).

There exist four transition paths, i.e. γ1 (A1 → A′
1), γ2 (A2 → A′

2), γ3 (A1 → A′
2) and γ4

(A2 → A′
1). Moreover, the EBK quantization condition implies φj − φ1 = 0, nπ, nπ (mod

2π ) for j = 2, 3, 4, respectively. According to equation (3.4), up to a phase

A(0) = ih̄

4πε
1
2

[
1

(1 + ε
1
2 )

3
2

+
1

(1 − ε
1
2 )

3
2

+ (−1)n
4

(1 + (1 − ε)
1
2 )(1 − ε)

1
4

]
.

When ε > 1, only γ1 survives so that

A(0) = ih̄

4πε
1
2 (1 + ε

1
2 )

3
2

.

Numerical results show that η(0) = |A(0)|/π is a good approximation of ηwhen h̄ is sufficiently
small and ε is not too close to 1, the energy of the separatrix (figure 5).

The same treatment can be applied to non-smooth systems where ND is originated from
spatial symmetries. By substituting (p,−x) → (x, p), relations (3.4), (3.5) can be directly
transformed to systems where the non-smoothness that results in the transition path depends
only upon the p-coordinate. Specifically, consider a transition path γj on the straight line
p = p∗

j with starting and end points at Aj = (xj , p
∗
j ) and A′

j = (x ′
j , p

∗
j ), the corresponding

reflection coefficient should be

rj = (ih̄)k

(x ′
j − xj )k+1

√
|ṗ(Aj )ṗ(A

′
j )|

∧k

p
H(x, p∗

j ). (3.6)

The phase difference is also given by equation (3.5), whereas the Maslov index should count
the singularity of the projection of the torus onto the momentum space3. Despite this similarity,
3 We use ω1 = p dx instead of ω′

1 = −x dp based on two facts. Firstly,
∮
γjk

ω1 = ∮
γjk

ω′
1 when γjk is contractible.

Secondly, if the coordinate space has non-trivial topology, ω1 is well defined while ω′
1 is not. We find that this choice

is justified by numerical results.
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interesting behaviour may occur when the configuration space has a non-trivial topology. We
shall demonstrate this through some examples.

Suppose the configuration space is a circle, i.e. (x, p) and (x + 2π, p) describe the
same point. In this case, a path (x, p) → (x ′, p) implies a family of paths (x, p) →
(x ′ + 2nπ, p), n ∈ Z. If we attribute the contribution of all these paths to a representative
path, say, (x, p) → (x ′, p), the only change of equation (3.6) is that 1/(x ′

j − xj )
k+1 should be

replaced by

∞∑
q=−∞

exp(i2qπp∗
j /h̄)

(x ′
j − xj + 2qπ)k+1

≡ Wk+1(x
′
j − xj , p

∗
j /h̄). (3.7)

W satisfies periodic condition Wk(x, y + 1) = ei2πyWk(x + 2π, y) = Wk(x, y). When
y ∈ [0, 1],

W2(x, y) = 1

4 sin2 x
2

[1 + y(eix − 1)]e−ixy

W3(x, y) = 1

8 sin3 x
2

[
cos

x

2
+ i2y sin

x

2
− 2y2 sin2 x

2
ei x2

]
e−ixy

(3.8)

and so on. We note that A(0) is in general not invariant under the translation (x, p) →
(x, p + δp) when δp is not an integer multiple of h̄, which is, however, always a symmetric
transformation in classical mechanics. This difference reflects the discreteness of quantum
momentum space.

Example 3.2.
H = |p − pc| + cos2 x.
The symmetric double-well potential causes ND at ε < 1. According to equations (3.6) and
(3.7), the total contribution of the transition paths (on p = pc) is given by

A(0) = ih̄

ε
1
2 (1 − ε)

1
2

[
W2

(
2xc,

pc

h̄

)
+ W2

(
2π − 2xc,

pc

h̄

)
+ (−1)n2W2

(
π,

pc

h̄

)]

where xc = cos−1 ε
1
2 . Whenpc = 0, A(0) = (ih̄/(2ε

1
2 (1 − ε)

1
2 ))[ 1

1−ε +(−1)n]. Whenpc = h̄
2 ,

A(0) = 0. In fact, �ε ≡ 0 in this case because H is represented by the same matrix in the
invariant subspaces spanned by functions {ei2nx}n and {ei(2n+1)x}n, respectively.

Consider a spin system defined in classical and quantum mechanics by respectively
{Jj , Jk} = εjksJs and [Jj , Jk] = ih̄εjksJs , j, k = 1, 2, 3. When J 2 = J 2

1 +J 2
1 +J 2

3 is fixed, the
classical mechanics is confined within a sphere SJ . Restricting the su(2) Poisson structure to
SJ yields a symplectic two form ω2 = J sin θ dφ∧dθ , where (θ, φ) is the conventional sphere
coordinate. In quantum mechanics, J 2 = j (j + 1)h̄2, j = 1

2 , 1, 3
2 , . . . . An eigenspace of J 2 is

associated with a classical sphere SJ , in which we shall assume J = (j + 1
2 )h̄ so that its phase

space area (the integral of ω2 on SJ ) in units 2πh̄ is 2j + 1, which directly corresponds to the
dimension of the eigenspace. In our treatment of non-smooth systems, a prerequisite is that
the phase space is the direct product of the coordinate and momentum spaces. To meet this
requirement, we write (J cos θ + p0, φ) = (p, x), in which ω2 = dp ∧ dx, and regard (x, p)
as the natural coordinate of the phase space of a mechanical system on a circle. Moreover, to
ensure the right spectrum of J3 = p − p0, we choose p0 = 0 (or 1

2 h̄) in the case of j is
an integer (or half integer). By this transformation in classical mechanics, we can treat the
non-smoothness-enhanced tunnelling in some spin systems.
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Figure 6. η (open circles) and η(0) (connected dots) in example 3.3 at (a) j = 100 and (b) j = 99 1
2 .

Example 3.3.

H(J1, J2, J3) =
{
J 2

1 − J 2
2 + J 2

3 J3 � 0
J 2

1 − J 2
2 J3 < 0.

The corresponding classical system on a circle is

H(x, p) =
{

[J 2 − (p − p0)
2] cos 2x + (p − p0)

2 p�p0

[J 2 − (p − p0)
2] cos 2x p < p0.

From phase space portrait we know that energy levels in (−J 2, 0) consist of two-fold ND and
according to equations (3.6) and (3.7),

A(0) = −h̄2

J 2 sin 2xc

[
W3

(
2π − 2xc,

p0

h̄

)
+ W3

(
2xc,

p0

h̄

)
e2i(φ− π

2 ) + 2W3

(
π,

p0

h̄

)
ei(φ− π

2 )
]

where xc = 1
2 cos−1 ξ with ξ ≡ ε/J 2 and φ = πJ (1 − sin xc)/h̄ = π(j + 1

2 )[1 − (
1−ξ

2 )
1
2 ].

When j is an integer,

|A(0)| = | cosφ|
2(j + 1

2 )
2(1 − ξ)2

and when j is a half integer,

|A(0)| = 1

4(j + 1
2 )

2(1 − ξ 2)
1
2

∣∣∣∣∣ 3 + ξ√
2(1 − ξ)

3
2

sin φ +
1

2

∣∣∣∣∣ .
(In this case, 1

j+ 1
2

can be regarded as an effective h̄.) These relations give a good description

of the energy splitting when j � 1 (figure 6).
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4. Discussion

When the non-smooth system is controlled by a parameter λ, e.g. V (x) → λV (x), it is easy to
obtain a zero of A(0) when λ is continuously varied. One can naturally ask whether the zero of
A(0) predicts an exact degeneracy of the energy level or if it merely corresponds to a minimum of
�ε. The answer turns out to be dependent upon the symmetry of the system. If the eigenstates
involved in ND can be distinguished by different symmetries irrespective of the parameter,
the energy difference between the two eigenstates should be a smooth function of λ, which is
approximately given by 2h̄

T
A(0) or a similar expression. In this case, the zero of A(0) indicates

a nearby exact degeneracy. Of course, because of the symmetry of H , this conclusion cannot
be regarded as a violation of the well known theorem of von Neumann and Wigner, which
states that generically we must vary two parameters to create a degeneracy [8]. On the other
hand, if the eigenstates cannot be restricted within different parameter-independent invariant
subspaces, e.g., when H = p2/2 + cos x + λ| sin x|, the zero of A(0) generally corresponds to
a minimum of �ε where we must take the higher order corrections into account.
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Appendix. Semiclassical calculation of energy splitting

We first consider the conventional Hamiltonian H = 1
2p

2 + V (x). Direct calculation show
that (

− h̄2

2

d2

dx2
+ V (x)

)
�±(x) = (ε + Q(x))�±(x) (A.1)

with Q = − h̄2

2 p
1/2(p−1/2)′′, where the prime denotes derivation with respect to x at fixed ε.

Because 〈�+|�+〉 = 〈�−|�−〉 = 1 and 〈�−|�+〉 ∼ 0, the energy splitting calculated in the
space spanned by �+ and �− is given by

�ε = 2|〈�−|Q|�+〉| = h̄2

2T

∣∣∣∣
∫ 2π

0

[
V ′′

p3
+

5(V ′)2

2p5

]
exp(i2s(x)/h̄) dx

∣∣∣∣. (A.2)

Before evaluating �ε according to equation (A.2), it is helpful to recall a useful
mathematical result on the asymptotic behaviour of the Fourier coefficients of a non-smooth
function. Let f (x) be a sufficiently regular 2π -periodic function on R. How its Fourier
coefficients, defined by

f̂ (n) =
∫ 2π

0
f (x) exp(inx) dx n ∈ Z (A.3)

decay when n → ±∞ is basically determined by the analytic property of f (x). If it
is smooth, then f̂ (n) for large n will approach zero faster than any power of |n|−1, i.e.
lim|n|→∞ f̂ (n)|n|α = 0 for arbitrary α > 0. On the other hand, if f (x) is not smooth,
the decay of f̂ (n) may follow a power law. In the simple case when f (x) is the union of N
smooth segments on intervals [x∗

i , x
∗
i+1], x1 < x2 · · · < xN+1 = x1 +2π , f̂ (n) can be expressed

by the asymptotic series

f̂ (n) =
∞∑
l=0

il+1

nl+1

N∑
j=1

exp(inx∗
j )

∧l

x
f (x∗

j ). (A.4)
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Letting s(x) = nh̄θ(x), we rewrite equation (A.2) as

�ε = h̄2

2T

∣∣∣∣
∫ 2π

0

[
V ′′

p3
+

5(V ′)2

2p5

]
nh̄

p
exp(i2nθ) dθ

∣∣∣∣. (A.5)

Noticing the integrand apart from exp(i2nθ) is unchanged in the semiclassical limit, according
to equation (A.4), we have

�ε = h̄k+1

2kT

∣∣∣∣
N∑
j=1

exp[2is(x∗
j )/h̄]

pk+2(x∗
j )

∧k

x
V (x∗

j )

∣∣∣∣ + o(h̄k+1). (A.6)

Then we consider Hamiltonian H = Ek(p) + V (x). In order to evaluate energy splitting
according to �ε = 2|〈�−|H − ε|�+〉|, it is instructive to go into some detail about the
momentum representation of �±. Write

�± =
∞∑

r=−∞
φ±
r |r〉 〈x|r〉 = 1√

2π
exp(irx) (A.7)

with

φ±
r = 1√

2π

∫ 2π

0
�±(x) exp(−irx) dx. (A.8)

Since φ−
−r = φ+∗

r , we shall focus on �+. The semiclassical limit of equation (A.8) should
be calculated in two separate cases. In the classically permissible region (CPR), where
p(x) − rh̄ = 0 is satisfied by some x ∈ [0, 2π), the stationary phase approximation can
be adopted, which gives

φ+
r ≈

√
h̄

T

∑
m

1√|V ′(xm)|
exp[i(s(xm)/h̄− rxm − σmπ/2)] (A.9)

where {xm} are solutions of p(x)− rh̄ = 0 and σm = sign(V ′′(xm)). When rh̄ is beyond CPR,
by using expansion (A.4), we find

φ+
r ≈ (ih̄)k+1

√
2πT

N∑
j=1

exp[i(s(x∗
j )/h̄− rx∗

j )]

(p − rh̄)k d
dpEk

d

dp


 −1

(p − rh̄)
√

d
dpEk




∣∣∣∣∣∣
p=p(x∗

j )

∧k

x
V (x∗

j ).

(A.10)

From equations (A.9) and (A.10) we conclude that �+ consists of the main part distributed
within CPR and two power-law-like long tails beyond CPR. (As the non-smoothness of the
eigenfunction resulted via the eigenequation from V (x), this picture is also true for the
exact eigenfunction.) Furthermore, if the semiclassical momentum representation of V�+

is calculated using a similar procedure, one can find that the main part of �+ within CPR, but
its long tail approximately satisfies the eigenequation (Ek(p) + V (x))� = ε�, i.e.

∞∑
m=−∞

(Ek(rh̄)δm,0 + Vm)φ
+
r+m ≈ εφ+

r (A.11)

when rh̄ ∈ CPR, where

Vm = 〈0|V |m〉 ≈ ik+1

2mk+1π

N∑
j=1

exp(imx∗
j )

∧k

x
V (x∗

j ) (|m| → ∞). (A.12)
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Based on the above discussion, we know that

〈�−|Ek(p)|�+〉 =
∞∑

r=−∞
φ+

−rEk(rh̄)φ
+
r ≈

∑
|rh̄|∈CPR

φ+
−rEk(rh̄)φ

+
r

≈
( ∑

νh̄∈CPR

∞∑
µ=−∞

+
∑

−µh̄∈CPR

∞∑
ν=−∞

)
φ+

−ν(εδν,µ − Vµ−ν)φ+
µ. (A.13)

Compare the last expression with

〈�−|ε − V |�+〉 =
∞∑

µ,ν=−∞
φ+

−ν(εδν,µ − Vµ−ν)φ+
µ. (A.14)

The main contribution of equation (A.14) consists of three parts coming from different
regions: (1) µh̄, νh̄ ∈ CPR, (2) −µh̄,−νh̄ ∈ CPR and (3) µh̄,−νh̄ ∈ CPR, respectively.
Equation (A.13) contains only the former two parts while we can screen the last contribution
by making a high-frequency cut off of V (x), i.e. replacing it by

V (0)(x) =
∑

|m|�kc

Vm exp(−imx) (A.15)

where kc is a large but fixed integer so that V (1)(x) = V (x) − V (0)(x) is negligibly small.
Therefore, 〈�−|Ek(p)|�+〉 ≈ 〈�−|ε − V (0)|�+〉, and consequently

〈�−|H − ε|�+〉 ≈ 〈�−|V (1)|�+〉 = 1

T

∫ 2π

0

V (1)

d
dpEk|p=p(x)

exp(2is(x)/h̄) dx. (A.16)

Observing that V (1)(x) ≈ 0 and
∧j

x V
(1)(x) = ∧j

x V (x) for arbitrary x ∈ [0, 2π) and j � 0,
by partial integration of equation (A.16) for successive k + 1 times we obtain

〈�−|H − ε|�+〉 = (ih̄)k+1

2k+1T

N∑
j=1

exp(2is(x∗
j )/h̄)

pk+1 d
dpEk|p=p(x∗

j )

∧k

x
V (x∗

j ) + o(h̄k+1) (A.17)

which immediately leads to equation (2.4).
Finally, it is worth pointing out that although the exact eigenstates have power-law tails

beyond CPR, the leading term of�ε does not actually rely on this detail. In fact, equation (A.16)
essentially equals ∑

µh̄,−νh̄∈CPR

φ+
−νVµ−νφ+

µ

which is controlled by the power-law decay of {Vm}. Therefore, equation (A.16) can
be reproduced from the highly localized semiclassical eigenfunctions corresponding to the
smoothed Hamiltonian H(0) = Ek(p) + V (0)(x).
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